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Reminder on Mathematics:  

 

o Euclidean geometry 

• The following notation will be used:  

 

• The magnitude (or norm) of a vector:  ‖𝒂‖ = 

 

• Scalar (or dot) product: for two vectors in the orthonormal basis 𝒊, 𝒋, 𝒌, we have: 𝒂.𝒃 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 

𝒂. 𝒃 = ‖𝒂‖ × ‖𝒃‖cos⁡(𝛼)  where 𝛼⁡is the angle between the two vectors.  

• The cross product of two vectors forming an angle 𝛼  is a vector perpendicular to these vectors, with the magnitude:  
‖𝒂 × 𝒃‖ = ‖𝒂‖⁡‖𝒃‖⁡sin(𝛼) 

• In an orthonormal basis (i,j,k), the Cross product of two vectors 𝒂 and b is:   

 

o Line: Parametric equation of a line passing by two points A and B:  𝐿 = {𝑀 = (
𝑥
𝑦
𝑧
) 𝑠𝑢𝑐ℎ⁡𝑡ℎ𝑎𝑡 ∃𝜆 ∈ ℝ 𝑨𝑴 = 𝜆𝑨𝑩} 

o Plane: 

• A plane is defined by 3 points 𝐴 = (

𝑥𝐴
𝑦𝐴
𝑧𝐴
), B = (

𝑥𝐵
𝑦𝐵
𝑧𝐵
) and C = (

𝑥𝐶
𝑦𝐶
𝑧𝐶
)  or a point A and a normal 𝒏 = (

𝑛𝑥
𝑛𝑦
𝑛𝑧
) =⁡ (

𝑎
𝑏
𝑐
) 

• This can be expressed in a simple way as: 𝑃 = {𝑀 = (
𝑥
𝑦
𝑧
) ,  𝑨𝑴.𝒏 = 0}  

• One can extract the linear equation: for (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℝ4,  𝑃 = {𝑀 = (
𝑥
𝑦
𝑧
) ,  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑 = 0} 

o Angles 

• The angle between two vectors can be calculated from the dot or the cross products. 

• Angle between a line and a plane: Complementary of the angle between the line direction and the normal of the plan  

• Angle between two planes: Angle between their normals:  

 

o Volume formed by three vectors: 𝑉 = 𝑎⃗. (𝑏⃗⃗ × 𝑐) = 𝑏⃗⃗. (𝑐 × 𝑎⃗) = 𝑐. (𝑎⃗ × 𝑏⃗⃗) 
 

 

o Complex Numbers 

• Exponential form: z = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃 = 𝑟𝑒𝑖𝜃  

• For z ∈ ℂ,  𝑧 = 𝑟𝑒𝑖𝜃 ,  𝑧∗ = 𝑟𝑒−𝑖𝜃  

• |𝑒𝑖𝜃| = 1 = √𝑥2 + 𝑦2, with 𝑥 = 𝑐𝑜𝑠𝜃 and y= 𝑠𝑖𝑛𝜃  

• cos(𝑥) =
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
⁡𝑎𝑛𝑑⁡ sin(𝑥) =

𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
 

• Unity circle is shown to the right.  

 

 

 

 

 

Crystalline State:  

Materials in a crystalline state are organized into ordered arrangements of atoms. The chemical composition of the material forms 

a motif, that is placed at prescribed positions on a lattice called the Bravais Lattice. 

The Bravais lattice is expressed mathematically as an infinite set of points with translational symmetry along three axis that form a 

vector basis. Choosing an origin O, one can write 

ℬ = {𝑃,  𝑶𝑷 = 𝑛1𝒂+ 𝑛2𝒃 + 𝑛3𝒄,(𝑛1,𝑛2 𝑛3) ∈ ℤ3} 
 

The vectors (𝑎, 𝑏 , 𝑐) are the primitive vectors of the Bravais lattice.  

One can distinguish 7 crystal systems, that reflect the symmetry of the crystal. 14 Bravais lattices: 

 

o ∈ℤ  

 



 
 

Cells and basis 

• To represent crystals, we use different types of unit cells. The conventional unit cell is the most commonly used as it 

exhibits the highest symmetry of the crystal. They can however contain several motifs.  

• Primitive unit cells are cells with one motif.  

 

Coordination Number  

• Number of closest neighbors, ie when spheres are in contact in a hard sphere model.  

• For crystals with different atoms in the motif and notably for ioinc crystals, the coordiantion number counts the 

closest atoms of different nature.  

 

Hard Sphere model 

 

o A first intuitive representation of crystals can be obtained by considering atoms as hard spheres packed into 3D 

geometrical forms; From basic geometric and vectorial consideration of the unit cell, one can calculate key properties of 

materials such as density and packing fraction (of free volume).  

o  Density:     𝜌 =
𝑁𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙×𝑚𝑎𝑡𝑜𝑚𝑠

𝑉𝑐𝑒𝑙𝑙
  

o Packing fraction:  c  or  p =
𝑁𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙×𝑉𝑎𝑡𝑜𝑚𝑠

𝑉𝑐𝑒𝑙𝑙
 

o The number of atoms per cell must be evaluated carefully as each atom is shared with other neighboring cells.  

o Direction and planes of high density are defined where atoms are organized in a dense manner where they are in contact 

with each other.  

 

Interstitial sites and Ionic / covalent crystals 

 

▪ The notion of interstitial sites in metals can be used to estimate what the crystal structure could be of ionic crystals.  

• First Pauling Rule: For two atoms (NaCl, ClCs, ZnS etc…), the first Pauling rule establishes a formula that defines the 

coordination number depending on the ratio of the radius of the cation to the one of the anion: 𝜌 =
𝑟+

𝑟−
 

• Based on the hard sphere model, it predicts that if the cation is too small, anions get too close to each other which lead 

to an unstable structure due to repulsive forces.  

• At the limit of stability, geometric consideration can give a condition on the ratio to have a certain coordination, in 

other words a certain number of cations surrounding an anion (and vice versa). 

• The formula is given by : 𝜌 =
𝑟+

𝑟−
= √

12

12−𝐶𝑁
− 1, where CN = coordination number 

- For 0.1547 < 𝜌 < 0.2247, 𝐶𝑁 = 3 ; Type of void: triangular planar 

- For 0.2247 < 𝜌 < 0.4142, 𝐶𝑁 = 4 ; Type of void: Tetrahedral  

- For 0.4142 < 𝜌 < 0.7320: 𝐶𝑁 = 6 ; Type of void: Octahedral 

- For 0.7320 < 𝜌 < 1: 𝐶𝑁 = 8 ; Type of void: Cubic 

 

 

Crystal symmetries 

 

▪ There are an infinite possibilities of Bravais lattices as the lattice parameters (vector norms and angles) can be chosen 
arbitrarily.  

▪ The combination of the motif symmetry and the translational symmetry associated to the Bravais Lattice imposes 

restrictions on the type of symmetries a crystal (motif + Bravais lattice) can have.  

Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

a = b = c

a = b = g = 90º

a = b ¹ c

a = b = g = 90º

a ¹ b ¹ c

a = b = g = 90º

a = b ¹ c

a = b = 90º; g = 120º

a ¹ b ¹ c

a = g = 90º ¹ b

a ¹ b ¹ c

a ¹ b ¹ g

a = b = c

a = b = g ¹

90º

7 classes / 14 Bravais

P : primitive

I : centered

F : face centered

C : base centered

Trigonal or 

rhomboedric



▪ For a crystal to have a rotational symmetry of angle 𝜃 for example, translational symmetry indeed brings severe restrictions, 

as we can only have the following values for 𝜃: 
2𝜋

1
,  
2𝜋

2
,
2𝜋

3
,
2𝜋

4
,  
2𝜋

6
.  

 

▪ A symmetry operation is an action that leaves an object unchanged.  

▪ A symmetry element is a part of the object that doesn’t move during the operation: a point, a line, a plane, an entire object.  

▪ There are two kinds of symmetry operations:  

 

o Travel symmetry operations:  

▪ Glide plane: Action: Reflect through a plane then translate parallel to it; 

▪ Screw axis: Action: Rotation by 360/N around an axis and translation along the axis 

 

o Point symmetry operations: 

▪ Identity (1): Action: inversion through a point; Symmetry element: entire object 

▪ Inversion (𝟏̅): Action: inversion through a point; Symmetry element: a point 

▪ Rotation (N): Action: N-fold rotation around an axis (360/N); Symmetry element: a line 

▪ Mirror plane or reflection (m): Action: Reflection through a plane; Symmetry element: a plane 

▪ Rotoinversion (𝑵̅): Action: Rotation +Inversion; Symmetry element: a point 

 

Point Group:  

▪ Points group are a set of symmetries associated to a 2D object (or motif), that verifies certain rules.   

▪ A Group is a very important mathematical construction. A set G of objects is a group if it is closed under an operation ∗: 

for any x, y ∈ G, x ∗ y ∈ G.  

▪ A Group is a mathematical construction that  satisfies the following properties: 

- Identity (fixed point) – There is an element e in G, such that for every x ∈ G, e ∗ x = x ∗ e = x 

- Inverse – For every x in G there is an element y ∈ G such that x ∗ y = y ∗ x = e 

-  Associativity – The following identity holds for every x, y, z ∈ G: x ∗ (y ∗ z) = (x ∗ y) ∗ z 

 

▪ Point Group Symmetry 

o Closure: The combination of symmetry operators is a symmetry operator in the group.  

o All symmetry operators have an inverse, some are their own inverse.  

o Identity is part of all the Point group symmetry.  

o Associativity is respected 

 

▪ Order (or cardinal) of a group: number of symmetry elements in the group.  

▪ In 2D there are 10 point groups when we restrict to the 1,2,3,4 and 6 fold rotational symmetries. Combined with the 5 2D 

Bravais lattices, we obtain 17 “Plane groups” that characterize the possible symmetries of a 2D crystal.  

▪ In 3D, there are 32 points group, and 14 possible Bravais Lattices. This results in 230 “Space groups”: 

▪ For all crystals with one atom per motif, the space group corresponds to the point group of the conventional cell geometry.  

The atom being considered spherical, it conserves all other symmetries. 

 

Crystal directions and planes, Miller indices 

• Crystal directions are lines that pass through at least two lattice points. The direction can be defined by an origin (all 

lattice point can be an origin) and the coordinate of the other point in the lattice basis.   

• The coordinates, which are relative integers, represent the Miller indices.  

• Crystal planes pass through three lattice points and are also defined by Miller indices.  

• Miller indices can vary depending on the basis used. Conventional cells are used by default to determine Miller 

indices.  

• In the cubic system, in the orthonormal basis ℬ(𝑂, 𝒙, 𝒚, 𝒛), the equation of an (hkl) plane that intercepts the axis at 

points 𝐴(
𝑎

ℎ
, 0,0) ; 𝐵 (0,

𝑎

𝑘
, 0) ; ⁡𝐶 (0,0,

𝑎

𝑙
) where 𝑎 is the edge of the cube, is given by: 

𝒫
(ℎ𝑘𝑙)

= {(𝑥, 𝑦, 𝑧) ∈ ℝ3/ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 = 𝑎} 
 

▪ In the cubic system, for a lattice parameter (or cube edge) 𝑎, the distance between parallel crystal planes 𝑑(ℎ𝑘𝑙) is given by:                   

𝑑(ℎ𝑘𝑙) =
𝑎

√ℎ2+𝑘2+𝑙2
 

 

Reciprocal space 

 

▪ For a Direct lattice space (𝑂, 𝒂, 𝒃, 𝒄), we define the Reciprocal Lattice (𝑂,𝒂∗ , 𝒃∗, 𝒄∗) such that: 

 

 
 

▪ The reciprocal lattice, or reciprocal space, is the set of points: ℛ = {𝑃,  𝑶𝑷 = 𝑛1𝒂
∗ + 𝑛2𝒃

∗ + 𝑛3𝒄
∗,(𝑛1,𝑛2 𝑛3) ∈ ℤ3}. 



▪ The reciprocal basis, from these considerations, is constructed as follow:  𝒂∗ = 2𝜋
𝒃×𝒄

𝑉
; 𝒃∗ = 2𝜋

𝒄×𝒂

𝑉
; 𝒄∗ = 2𝜋

𝒂×𝒃

𝑉
, where 

V is the volume formed by the (𝒂, 𝒃, 𝒄)vectors: 𝑉 = 𝒂. (𝒃 × 𝒄).  
 

▪ A definition of Miller indices: Miller indices (ℎ𝑘𝑙) represent the indices of the planes in the direct lattice that are orthogonal 

to the vector ℎ𝑎∗+𝑘𝑏∗+𝑙𝑐∗ in the reciprocal lattice. 

 

▪ By construciton, the distance between parallel crystal planes is given by: 𝑑(ℎ𝑘𝑙) =
2𝜋

‖𝑵(𝒉𝒌𝒍)
∗ ‖

 where 𝑵(𝒉𝒌𝒍)
∗  is a vector of 

coordinates (h,kl) in the reciprocal basis (𝑂,𝒂∗ , 𝒃∗ , 𝒄∗).  
 

▪ The calculation can be made for other structures 

 
 

Diffraction 

 

▪ Interference phenomena can occur when a X-ray beam is shun upon a crystal. Crystal planes act as scatterers and a Bragg 

law can be obtained that linked the angle of incidence, the wavelength and the distance between crystal planes, in order 

to observe a peak of interference.  

▪ Bragg law: 2𝑑(ℎ𝑘𝑙) sin(𝜃) = 𝑛𝜆, where 
𝜋

2
− 𝜃⁡is the angle of incidence with the normal to the plane, n is an integer 

defining the order of the interreference, and 𝜆 the wavelength of the incident beam.  

▪ Laue condition: a condition for constructive interference where the difference of the diffracted wave vector 𝒌𝟏 and the 

incident wave vector 𝒌𝟎 verifies:  𝑲 = 𝒌𝟏 − 𝒌𝟎 ∈ ℛ where ℛ is the reciprocal space. In other words, for a given 

illumination direction given by 𝑘0, interference peaks will be measured along directions (𝑘1) for which the vector 

representing the difference between the two wave vectors belongs to the reciprocal space.  

▪ We consider elastic scattering (Thompson scattering)  

▪ The wave vector k is related to the wavelength of X-rays by: 𝒌 =
2𝜋

𝜆
 

▪ The scattering vector q (or -K as named above), is the vector difference between the incident k0 and scattered wave vector 

k: 𝒒 = 𝒌0 −𝒌. For elastic scattering it follows the relationship between the scattering vector q and the scattering angle 

2θ: |𝑞⃗| = 𝑞 =
4𝜋sin⁡(𝜃)

𝜆
  

▪ Since the X-ray energy is often given in kilo electron Volts keV, the following simplified equation can be used to 

transform to the wavelength: λ [Å] = 12.3984/E [keV]  
▪ In order to measure a diffraction peak, the Bragg points (000), which is at the position of the direct incoming beam and 

the Bragg point (hkl) from the reciprocal space lattice must lie on a sphere of radius equal |k| (the wave vector of the 

experiment) in reciprocal space ℛ, the so called Ewald sphere. 

 

▪ Scherrer equation 𝐵 =
𝐾𝜆

𝐷cos𝜃
 where B is the broadening of the diffraction line at half maximum (after correction for 

instrument broadening), K is a constant depending on the crystal structure, K 1 and D is the diameter of the crystallite. 

 

 

Structure factors 

▪ The scattering from crystalline material can be calculated as  

▪ 𝐹(𝒒) = ∑ 𝑓𝑙(𝒒)𝑒
𝑖𝒒∙𝒓𝑙𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑙 = ∑ 𝑓𝑗(𝒒)𝑒
𝑖𝒒∙(𝑹𝑛+𝒓𝑗) = ∑ 𝑒𝑖𝒒∙𝑹𝑛𝑛 ∑ 𝑓𝑗(𝒒)𝑒

𝑖𝒒∙𝒓𝑗
𝑗

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠
𝑹𝑛+𝒓𝑗  

▪ With the atomic form factor Atomic form factor  fl(q) = ∫𝜌(𝒓)𝑒𝑖𝒒⋅ 𝒓𝑑𝒓 of atom positioned at rl, and rl = Rn+rj, Rn lattice 

vector, rj position vector of the atoms in the unit cell 

▪ The last term is called the structure factor. Considering Laue condition q = K = k0-k  

▪ 𝑆(𝑲) = ∑ 𝑓𝑗(𝑲)𝑒
𝑖𝑲∙𝒓𝑗

𝑗  

▪ The sum is over the 𝑗 atoms of a motif.  

▪ To explain diffraction, one can view non-primitive crystal structures as being defined by the conventional cell, and a 

motif with a number of atoms equal to the number of atoms per conventional cell. For example, a BCC structure can be 

seen as a simple cubic structure with two atom (one atom on cube corner, one in the center) as the motif.  

▪ That way, a structure factor can be calculated for materials with different atoms in its motif, but also for crystals with the 

same atom in the motif.  

 



Scattering 

▪ For nanoparticle with well-defined size and shape, in analogy to diffraction a particle form factor P(q) can be defined, 

which is the Fourier transform of the electron density distribution at the nanoscale, and a particle structure factor S(q) 

which takes interference between neighboring particles into account resulting in a scattering intensity of 𝐼(𝑞) =
(𝜌𝑃 − 𝜌𝑀)

2𝑁𝑃𝑉𝑃
2𝑃(𝑞)𝑆(𝑞), with 𝜌𝑃 − 𝜌𝑀 the electron density difference between particle and matrix, 𝑁𝑃 the number of 

particles, 𝑉𝑃 the volume of particles, which can be used to mathematically model the scattering curves if pre-knowledge 

on the shape of the nanoparticles exist. 

 

▪ Particle size can be extracted by the Guinier approximation 𝐼(𝑞) ≈ 𝐼(0)𝑒−(1 3)𝑞2𝑅𝐺
2⁄  where 𝑅𝐺  is the radius of gyration 

 

▪ The radius of gyration 𝑅𝐺  for some simple particle shapes is: 

o Solid sphere with radius R 
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5
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o Thin rod with length L 
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o Thin disc with radius R 

2 21

2
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o Cylinder of height h and radius R 

2 2
2
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G
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o For a polymer coil with end to end distance R 

𝑅𝐺
2 =

1

6
𝑅2 

 

  

▪ From the slope of the scattering curve at intermediate scattering vectors, the intensity varies with 𝑞−𝐷 where D is the 

fractal dimension, i.e. how does the mass changes as a function of the size 

 

Amorphous materials: glasses 

▪ Whereas crystalline materials have long-range order, the exact location from an atom can be interfered relative to a 

chosen atom at the origin → atomistic structure description in crystallography 

 

▪ amorphous materials only exhibit short-range order over some atomic/molecular diameters, still a certain periodicity in 

the distribution of atoms exist, over longer distance the correlation gets lost, due to that randomness in the position, 

structure can only be described statistical  

 

▪ liquid crystals exhibit long range order and either only orientational symmetry (nematic) or orientational and translational 

symmetry (smectic) 

 

▪ pair distribution function (PDF) describes the probability g(r) of finding an atom/molecule at a certain distance r 

normalized over the overall density, and thus describes the local density in the structure surrounding an atom with radius 

R0 

▪ g(𝑟) =  
𝑑𝑛(𝑟,𝑟+𝑑𝑟)

𝑑𝑣(𝑟,𝑟+𝑑𝑟)

1

𝜌0
=

𝜌(𝑟)

𝜌0
 with 𝑑𝑛 the number of  atoms in a spherical shell with volume 𝑑𝑣 in distance 𝑟 from an 

arbitary atom selected as the origin, with the atomic pair density 𝜌(𝑟) in the shell and 𝜌0⁡the average particle density 

 

▪ PDF is related to the measured X-ray (or neutron) powder diffraction through a Fourier transform  

𝑔(𝑟) = (2 𝜋⁄ )∫ 𝑞[𝑆(𝑞) − 1] sin(𝑞𝑟)𝑑𝑞
𝑞𝑚𝑎𝑥

𝑞=0
  

where S(q) is the liquid (or glass) structure factor. In analogy with the discussion in diffraction and scattering, S(q) is the 

interaction term of the scattering, and can be extracted from the measured and corrected intensity I(q) by extractring the 

contribution of the atomic form factor fl(q) of all atoms in their concentration 𝑐𝑙  with 

𝑆(𝑞) = ⁡
𝐼(𝑞)−⁡∑𝑐𝑙|𝑓𝑙(𝒒)|

2

|𝑐𝑙𝑓𝑙(𝒒)|
2 +1 

 

▪ For the atomic scale structure of amorphous solids different models exist: 

o Continous random-network model for covalently bonded glasses 

o Random coil-model for polymer chains 

o And random close-packing model for metallic glasses 

 

Polymers: 

▪ polymers are chain-like molecules where monomers covalently bond with each other repeat in either linear polymers, 

branched polymers (short and long side chains), star polymers or they form network of cross-linked polymer chains 



 

▪ the tacticity describes the arrangement of side groups and is important to their ability to form crystals or glasses. 

o Isotactic: side groups on the same side of the chain 

o Syndiotactic: alternating side groups 

o Atactic: random arrangement of side groups 

 

▪ Copolymers consist of different monomers and can appear in blocks, alternate regularly or in random sequence 

 

▪ The polydispersity index is given by Mw /Mn with 

Weigth average 𝑀𝑤 =
∑𝑤𝑖𝑀𝑖

∑𝑤𝑖
=

∑𝑛𝑖𝑀𝑖𝑀𝑖

∑𝑛𝑖𝑀𝑖
 

Where 𝑛𝑖 and 𝑤𝑖 are number and weight fractions of molecules/chains with molar mass 𝑀𝑖 

 

▪ The contour length of  a polymer is rmax = Na with N the number of monomers and a the length of one monomer 

 

▪ Random coil model: For freely jointed chain segments, at each connection point a new direction is acquired by random 

→ random walk. To estimate the size of the coil: determination of end-to-end distance of the chain r, which is a random 

variable with the expected value R 

▪ if each segment is equal to the chemical monomer with length a for one specific polymer chain, r is the vector sum of all 

monomers 𝒓 = ∑ 𝒂𝑖
𝑁
𝑖=1  for random walk the expected value R of this random walk is 

o 𝑅 = 𝑎𝑁1 2⁄  

▪ In real chains it is the the statistical step length, called the Kuhn length b where the segments are freely jointed, the 

number of segments is aN/b 

o 𝑅 = 𝑏(𝑁𝑎/𝑏)1 2⁄ = (𝑎𝑏𝑁)1 2⁄  

o 𝐶∞ =
𝑎2

𝑏2
 is the Flory’s characteristic ratio between the momomer length a and the Kuhn length b 

▪ For very stiff polymers one considers the worm-like chain model of continuous bending chains, over even longer 

distances, there is still a loss of correlation, which is called the persistence length lp and for long enough chains random 

walk still applies, but now with a statistical step size of the persistence length 

o 𝑅 = (2𝑙𝑝𝑎𝑁)
1 2⁄   

▪ In a solvent the interaction between the polymer chain and the solvent changes how much the coil expands 

o Poor solvent: segments attract each other, form a more compact structure 𝑅 = 𝑎𝑁1 3⁄  

o “theta solvent” repulsive and attractive forces are balanced: normal random walk 𝑅 = 𝑎𝑁1 2⁄  

o Good solvent: more repulsion between the chains resulting in an expanded coil 𝑅 = 𝑎𝑁0.6 

 

▪ Crystallinity in polymers: lamellar growth of crystalline domains, thickness usually around 10-20 nm, lateral extension 

much larger.  

 

▪ Apart from the simple polyethylene chain (monomer -C2H4-) which forms a straight zigzag when stretched, most 

polymer chains when stretched are helically twisted due to steric constrains.  

 

▪ Different microstructures form in semi-crystalline polymers  

o Spherulites: lamellae branches grow from a nucleation center spherically 

o If crystallization under influence of shear, more fibrillar structures are formed 

 

▪ Main classes of biological materials 

Polymeric molecules  

o Nucleic acids: DNA stores genetic code, controlled sequence, double helix with complementary base pairs with 

specific hydrogen bonding which allows for exact copy in DNA replication, RNA slightly different chemical 

composition, single stranded, involved in transcription of information into proteins. 

o Proteins: monomers are 22 different amino acids, the amino acid sequence is the primary structure, determined 

by genetic code, some amino acids are hydrophobic (apolar), some are hydrophilic and either uncharged (polar) 

or charged (acidic or basic), these leads to specific interactions along the chain, fold into secondary structures 

(alpha-helix and beta-sheets) and assisted self-assembly into tertiary structures (and sometimes quaternary 

structures involving several molecules) forming the very specific functional three-dimensional structure 

o Polysaccharides, carbohydrates (Cx(H2O)y ) monomers are various sugars, no defined sequence and branching 
 

Lipids:  

o Depending on double bonding present in the fatty acid chains (saturated or unsaturated fatty acids) they are in 

crystalline state at room temperature (fats) or in liquid state (oils) 

 

Amphiphilic molecules 

o Contain hydrophopic groups and hydrophilic groups in one molecule 

Self-assembly structures are formed, depending on the geometry of the molecules and they can form micelle 

(sphere), worm-like micelles (cylinders), bilayers (plane) 

o Packing parameter 
𝑣

𝑎0𝑙𝑐
 with 𝑙𝐶  critical chain length, v chain volume and a0 optimal headgroup area 



𝑣

𝑎0𝑙𝑐
<

1

3
 for spherical micelles, 

𝑣

𝑎0𝑙𝑐
<

1

2
 for cylinder, 

𝑣

𝑎0𝑙𝑐
≈ 1 for bilayer, 

𝑣

𝑎0𝑙𝑐
> 1 for inverted structures 

 

 

 Biominerals 

o Calcium phosphate (eg hydroxyapatite in bone) 

o Calcium carbonate (eg aragonite and calcite in mollusk shells) 

o Silicates (diatoms) 

 

▪ Hybrid materials are composites consisting of two constituents at the nanometer or molecular level 

▪ Composite material consists of different materials/phases on the microscopic scale 

▪ Composite materials 

o Reinforced composites: fiber, particulate or flake composites 

Properties are determined by properties of fiber and matrix, the ratio of fiber to matrix and the geometry and 

orientation of the fibers in the matrix 

o Sandwich structures: laminated sheets and shells, reduce material usage 

o Functional composites 

 



 


